Skip to main content

Engineering Thermodynamics - Syllabus

Thermodynamics, science of the relationship between heatworktemperature, and energy. In broad terms, thermodynamics deals with the transfer of energy from one place to another and from one form to another. The key concept is that heat is a form of energy corresponding to a definite amount of mechanical work.

Syllabus

                            

UNIT I BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive, total and specific quantities. System and their types. Thermodynamic Equilibrium State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of work .P-V diagram. Zeroth law of thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –new temperature scales. First law of thermodynamics –application to closed and open systems – steady and unsteady flow processes.

UNIT II SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink. Heat Engine, Refrigerator, Heat pump. Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility. I and II law Efficiency.

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economiser, preheater, Binary and Combined cycles.

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties. Compressibility factor-.Principle of Corresponding states. -Generalised Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton’s and Amagat’s Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

Comments

Popular posts from this blog

Thermodynamics - Lecture - 11 - Unit - 3 - Steam Properties and Problems

Problem: 1   A vessel of volume 0.04 m 3 contains a mixture of saturated water and steam at a temperature of 250°C The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy and internal energy. Given data: V=0.04m 3 T= 250°C m 1 = 9 kg To find: p, m, v, h, S, and U   Solution: From Steam Tables corresponding to 250°C, v f =v 1 = 0.001251 m/kg V g = V s = 0.050037 m/kg p= 39.776 bar   Total volume occupied by the liquid, V 1 = m 1 v 1 = 9 x 0.001251 = 0.0113 m 3 Total volume of the vessel, V = Volume of liquid + Volume of steam V 1 +V s V s =0.0287 m 3   Mass of steam, m s = V s / V s   =0.0287 / 0.050037 =0.574 kg Mass of mixture of liquid and steam, m=m 1 +m s = 9+ 0.574 = 9.574 kg   Total specific volume of the mixture, v = V / m   = 0.04 /9.574 = 0.00418 m 3 /kg   We know that, v=v f +x V fg V fg = v g - v f 0.00418 = 0.001251 + x (0.050037 -0.001251) x=0.06   From Steam

Engg Thermodynamics - Lecture - 13 - Unit - 4 - Ideal Gas and Real Gas & TD Relations

 Ideal Gas Imaginary Substance Obeys the law of PV=RT At low Pressure and High Temperature – density of gas Decreases Real Gas At High Pressure – Gas start to Deviate from Ideal Gas Measuring of Deviation – Compressibility Factor PV=ZRT Z=PV / RT Z = Vactual / Videal For Ideal Gas Z = 1 For Real Gas Z > 1 Important Laws (Ideal Gas) Boyle's Law (constant temperature) P = constant / V Charles Law (constant pressure) V = constant x T Gay-Lussac’s Law (constant volume) P = constant x T THE ENTHALPY OF ANY SUBSTANCE h=u+pv for an ideal gas h=u+RT h=f(T) dh=du+RdT since R is constant ∆h=∆u+R∆T =Cv∆T+R∆T = (Cv+R)∆T Since h is a function of T only, Cp=(∂h/∂T)p Entropy change of an ideal gas: (Eqn – 1) From the general property relations Q = W+ U Tds=du+pdv And for an ideal gas, du=CvdT, dh=CpdT, and pv=RT, the entropy change between any two states 1 and 2 may be computed as given below ds=du/T+p/Tdv =CvdT/T+Rdv/v S2-s1=Cv ln T2/T1+R ln v2/v1 . Entropy change of an ideal gas: (Eqn -2) Fr

ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING

  ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING UNIT I INTRODUCTION Text Book Link: https://drive.google.com/file/d/1jcXUoP-axkNTd2S-AbiWhbUMCyqB643D/view?usp=sharing UNIT II GEOMETRIC MODELING Text Book Link: https://drive.google.com/file/d/1FMm2whgkPH0YdIz6z84csG9DonJJxJSR/view?usp=sharing UNIT III CAD STANDARDS Text Book Link: https://drive.google.com/file/d/1KBsbpx-PMudXsLasu2G6624ctD1ZgoMk/view?usp=sharing UNIT IV FUNDAMENTAL OF CNC AND PART PROGRAMING Text Book Link: https://drive.google.com/file/d/1LSSaf9Hr0olLyiyqE2nJNLzxs-lvjByo/view?usp=sharing UNIT V CELLULAR MANUFACTURING AND FLEXIBLE MANUFACTURING SYSTEM (FMS) Text Book Link: https://drive.google.com/file/d/1PxFAEx8YoFha_G_ZrDM4xOZpT91KPcbe/view?usp=sharing CAD&M Notes Link: https://drive.google.com/file/d/1dra3jcfkrF02HxXPLcgVyIcA234yPLQ2/view?usp=sharing CAD&M QB Link: https://drive.google.com/file/d/18fIwlt-Kbn_jVdJcJL97fSysuTfLINp1/view?usp=sharing