Skip to main content

Thermodynamics - Lecture - 4

 Laws of thermodynamics

Zeroth law of thermodynamics

First law of thermodynamics

Second law of thermodynamics

Third law of thermodynamics


Zeroth law of thermodynamics

If two systems are in thermal equilibrium with a third system, they must be in thermal equilibrium with each other.

or

In other words

If a body C, be in thermal equilibrium with two other bodies, A and B, then A and B are in thermal equilibrium with one another.


First law of thermodynamics

Known as the law of conservation of energy.

This states that energy can be neither created nor destroyed. However, energy can change forms, and energy can flow from one place to another.

* The total energy of an isolated system does not change.

The increase in internal energy of a closed system is equal to the heat supplied to the system minus work done by it.
dUsystem=Q - W

We can say
Qsystem= W + dU

Qsystem= W

100% Efficiency




Comments

Popular posts from this blog

Thermodynamics - Lecture - 11 - Unit - 3 - Steam Properties and Problems

Problem: 1   A vessel of volume 0.04 m 3 contains a mixture of saturated water and steam at a temperature of 250°C The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy and internal energy. Given data: V=0.04m 3 T= 250°C m 1 = 9 kg To find: p, m, v, h, S, and U   Solution: From Steam Tables corresponding to 250°C, v f =v 1 = 0.001251 m/kg V g = V s = 0.050037 m/kg p= 39.776 bar   Total volume occupied by the liquid, V 1 = m 1 v 1 = 9 x 0.001251 = 0.0113 m 3 Total volume of the vessel, V = Volume of liquid + Volume of steam V 1 +V s V s =0.0287 m 3   Mass of steam, m s = V s / V s   =0.0287 / 0.050037 =0.574 kg Mass of mixture of liquid and steam, m=m 1 +m s = 9+ 0.574 = 9.574 kg   Total specific volume of the mixture, v = V / m   = 0.04 /9.574 = 0.00418 m 3 /kg   We know that, v=v f +x V fg V fg = v g - v f 0.00418 = 0.001251 + x (0.050037 -0.001251) x=0.06   From Steam

Engg Thermodynamics - Lecture - 13 - Unit - 4 - Ideal Gas and Real Gas & TD Relations

 Ideal Gas Imaginary Substance Obeys the law of PV=RT At low Pressure and High Temperature – density of gas Decreases Real Gas At High Pressure – Gas start to Deviate from Ideal Gas Measuring of Deviation – Compressibility Factor PV=ZRT Z=PV / RT Z = Vactual / Videal For Ideal Gas Z = 1 For Real Gas Z > 1 Important Laws (Ideal Gas) Boyle's Law (constant temperature) P = constant / V Charles Law (constant pressure) V = constant x T Gay-Lussac’s Law (constant volume) P = constant x T THE ENTHALPY OF ANY SUBSTANCE h=u+pv for an ideal gas h=u+RT h=f(T) dh=du+RdT since R is constant ∆h=∆u+R∆T =Cv∆T+R∆T = (Cv+R)∆T Since h is a function of T only, Cp=(∂h/∂T)p Entropy change of an ideal gas: (Eqn – 1) From the general property relations Q = W+ U Tds=du+pdv And for an ideal gas, du=CvdT, dh=CpdT, and pv=RT, the entropy change between any two states 1 and 2 may be computed as given below ds=du/T+p/Tdv =CvdT/T+Rdv/v S2-s1=Cv ln T2/T1+R ln v2/v1 . Entropy change of an ideal gas: (Eqn -2) Fr

ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING

  ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING UNIT I INTRODUCTION Text Book Link: https://drive.google.com/file/d/1jcXUoP-axkNTd2S-AbiWhbUMCyqB643D/view?usp=sharing UNIT II GEOMETRIC MODELING Text Book Link: https://drive.google.com/file/d/1FMm2whgkPH0YdIz6z84csG9DonJJxJSR/view?usp=sharing UNIT III CAD STANDARDS Text Book Link: https://drive.google.com/file/d/1KBsbpx-PMudXsLasu2G6624ctD1ZgoMk/view?usp=sharing UNIT IV FUNDAMENTAL OF CNC AND PART PROGRAMING Text Book Link: https://drive.google.com/file/d/1LSSaf9Hr0olLyiyqE2nJNLzxs-lvjByo/view?usp=sharing UNIT V CELLULAR MANUFACTURING AND FLEXIBLE MANUFACTURING SYSTEM (FMS) Text Book Link: https://drive.google.com/file/d/1PxFAEx8YoFha_G_ZrDM4xOZpT91KPcbe/view?usp=sharing CAD&M Notes Link: https://drive.google.com/file/d/1dra3jcfkrF02HxXPLcgVyIcA234yPLQ2/view?usp=sharing CAD&M QB Link: https://drive.google.com/file/d/18fIwlt-Kbn_jVdJcJL97fSysuTfLINp1/view?usp=sharing